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Abstract—AI paves the way for intelligent space agents that
make autonomous decisions without the need for Earth-based
interaction. Unfortunately, mainstream AI frameworks and al-
gorithms as well as the COTS processors and AI accelerators on
which these run are driven by the consumer market, and hence
prioritize productivity over efficiency. The NimbleAI Horizon
Europe project is aimed at redefining the basis of AI-based
visual sensing and processing to boost efficiency by leveraging
key biological principles in eyes and brains. The project will
deliver novel neuromorphic hardware designs and IP to sustain
event-driven vision with the following target KPIs: (1) 100x
performance per mW gains compared to COTS processors (i.e.,
CPU/GPUs processing frame-based video); (2) 50x processing
latency reduction compared to CPU/GPUs; (3) energy consump-
tion in the order of tens of mWs; and (4) silicon area of approx.
50 mm2. This paper seeks liaison of the project with the space
community and stakeholders to get feedback early in the design
cycle, and ultimately increase adoption opportunities of NimbleAI
technology in next-generation vision payloads.

I. INTRODUCTION

Efficient use of energy, mass and downlink bandwidth are
important design drivers for space payloads, especially as
small satellites gain momentum in the NewSpace era and
ever more ambitious deep space exploration missions are
being envisioned. To increase remote sensing and processing
capabilities of devices put into space, both business-oriented
NewSpace companies and science-driven space agencies are
adopting latest generation AI-enabled embedded COTS pro-
cessors, while eyeing new technology concepts including
neuromorphic hardware [2]. Running AI on-board LEO satel-
lites and CubeSats makes it possible to optimize use of
limited communication bandwidth for real-time transmission
of relevant data to reduce reaction times in Earth observation
missions [3]. The need for in-situ processing and on-board
sensory perception (especially visual) is even more crucial
in deep space exploration missions, where real-time human
intervention is not possible because of the long time it takes
for data to travel back and forth.

Most COTS processor architectures (e.g., CPU/GPUs) are
very inefficient in comparison to biological eyes and brains,
which are honed by natural selection. The NimbleAI project
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[4] leverages key principles of energy-efficient light detection
in eyes and visual information processing in brains to create
an integral sensing-processing neuromorphic architecture that
adopts the biological data economy principle at different
levels. Notably, the NimbleAI 3D-integrated architecture im-
plements energy-efficient neuromorphic sensing and process-
ing components along with AI accelerators that support run
industry standard AI-based computer vision solutions, thus
balancing productivity and efficiency. 3D integration helps
overcome the Von Neumann bottleneck in COTS processors,
and leverages combined use of the most appropriate process
nodes to implement each component in the same chip [6].

This article discusses the main design features and func-
tioning principles of the NimbleAI architecture: (1) sense
only significant light changes (visual events) at the opti-
mal spatiotemporal resolution using Dynamic Vision Sensor
(DVS) technology; (2) distill sensed visual events to increase
information-efficiency; and (3) process selected information-
rich events using specialized kernels and AI models.

The article is organized as follows. Section II introduces
major challenges in the current state of AI-based computer vi-
sion evolution, and Section III outlines the NimbleAI approach
to deal with these challenges. Section IV discusses expected
benefits of NimbleAI in space applications. and Section V
sums up the main takeaways to conclude the paper.

II. CURRENT STATE OF AI EVOLUTION AND CHALLENGES

NimbleAI deals with four main challenges and limitations
of current AI-based computer vision algorithms and hardware.

C1.- Complexity of AI models: Accuracy of AI-based com-
puter vision algorithms is commonly opposed to efficiency
[7]. Convolutional Neural Networks (CNNs) are typically
scaled up to increase accuracy by adding more layers or
by enlarging these to process images at a higher resolution.
However, to keep workloads manageable by current ineffi-
cient processing architectures and fit large CNNs in resource-
constrained embedded processors, it is necessary to downscale
the input image resolution and shrink the network models, thus
sacrificing accuracy.

C2.- Performance and latency: State-of-the-practice com-
puter vision solutions are frame-based, which means that they
periodically acquire and process full-size images in a layer-
after-layer mode. Hence, the computation of one layer must be
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completed on the whole frame before the computation of the
next layer starts. This results in growing inference delays as AI
models include more layers and sensor resolution increases.

C3.- Energy-efficiency of processor architectures: The cur-
rent state-of-the-practice processor landscape includes general-
purpose (CPU/GPU) and AI-specialized (NPU/TPU) architec-
tures. CPU/GPUs are largely inefficient due to the continuous
back-and-forth transfers of data (and instructions) with mem-
ory [8], whereas efficiency improvements brought about by
NPUs (Neural Processing Units) and TPUs (Tensor Processing
Units) depend to a great extent on the ability of the host
CPU to split AI processing into matrix operations of similar
dimensions to those for which the NPU/TPU architecture was
optimized [9]. State-of-the-art neuromorphic architectures, on
the other hand, implement brain-inspired event-driven Spiking
Neural Networks (SNNs) to enormously increase energy-
efficiency as they process only changes in their inputs [10].
An important limitation of neuromorphic chips is that the
size of SNNs that can run is restricted by the implemented
neuron count in silicon. Innatera and Synsense commercial
chips implement only 1 k neurons, greatly limiting their use
to one dimensional applications such as audio. On the other
hand, TrueNorth is the largest chip that IBM has ever built: at
500 mm2 can hold only 1 M neurons [11], while real-world
vision applications typically require 10-20 M neurons.

C4.- System integration: CPU/GPUs and NPU/TPUs are
not typically integrated such that they can seamlessly and
efficiently process data streams from sensors or interface to
pre- and post-processing kernels. For example, TPUs do not
have image sensor interfaces and hence need to rely on a host
processor to capture and transmit video sequences to the TPU
engine. For each video frame, this process may take factors
more time than the TPU’s actual AI processing of that same
frame. Similar constraints hold for GPUs and NPUs.

III. THE NIMBLEAI APPROACH

NimbleAI is designing a 3D-integrated sensing-processing
architecture that can be customized (at design time and after
deployment) to a broad range of computer vision applica-
tions and a great variety of deployment environments. The
project explores system-level trade-offs in this architecture
and pursues specific improvements in selected components
where significant energy efficiency margins are foreseen, or
novel capabilities are envisioned. As opposed to current event-
based vision approaches that are yet limited (e.g., [12]), Nim-
bleAI aims to demonstrate techniques and hardware support
to enable seamless combined use of neuromorphic SNNs
and industry standard user-trained CNNs and thus achieve
powerful yet efficient vision perception.

Fig. 1 shows a conceptual view of the NimbleAI 3D
architecture, where the top DVS layer senses light and delivers
visual event flows to downstream processing and inference
engines in the interior layers. The six layers shown here are
only illustrative. Optimal partitioning decisions of components
into layers will be made using a 3D design space exploration
EDA tool that is being developed in the project, based on [5].

One of the novel system-level concepts in the NimbleAI
3D architecture are visual pathways that stream visual event
flows from sensor regions occupied by salient image features
to processing and inference layers using dedicated Through
Silicon Vias (TSVs) [6]. Visual pathways are assigned to
Regions of Interest (ROIs) in the sensor in a one-to-one fashion
and hence are dynamically created (and destroyed) as new
ROIs are detected. They are independently configured (from
sensor to processing) at optimal accuracy and latency levels
for each ROI. This includes establishing the shortest routes for
the event flows and adjusting the optimal working point for
the processing and inference engines to serve the workloads
with minimal energy use. We posit that visual pathways are an
elegant way to answer challenge C4 and harness the increased
bandwidth brought about by 3D silicon integration, taking
advantage of the irregular distribution of visual information
and uneven temporal dynamics in the scene.
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Fig. 1. 3D-stacked conceptual NimbleAI architecture

NimbleAI investigates two novel dynamic vision technolo-
gies to improve energy-efficient perception and increase adapt-
ability of visual pathways:

1.- A digital foveation mechanism to dynamically allocate
sensing resolution in the DVS layer based on the information
value brought about by each region to the application. Pixels
are dynamically grouped and ungrouped to form macro-pixels
with varying resolution levels. This mimics the foveation
mechanism in eyes, which allows foveated regions to be seen
in greater detail (e.g., salient objects) than peripheral regions
(e.g., background). Digital foveation is to be driven by selec-
tive attention and optical flow estimations. Hence, several ROIs
that match the size, shape and moving dynamics of the recog-
nized and tracked salient objects can be sensed simultaneously.
With this, we expect to maximize the amount of meaningful
information that can be captured as sensor resolution scales
up without unnecessarily increasing the processing workload.



A foveated DVS testchip with expected resolution of 400x400
pixels is being designed and manufactured using X-FAB 180-
nm process node.

2.- World’s first event-driven light-field image sensor is
being engineered by coupling a custom-made array of mi-
crolenses by Raytrix with a SONY-Prophesee IMX636 DVS
[13]. The light-field DVS sensor will run algorithms that
encode 3D visual scenes in the form of sparse events that also
include depth information: (x,y,z,t). The fact that DVS events
reflect edges of objects and that light-field algorithms rely on
correlations between neighbour data with lots of redundancy
[14], leads us to think that large amounts of processing and en-
ergy could be saved by combining both technologies. In fact, it
has already been demonstrated that boundaries-first processing
lends well to DVS events while putting less pressure on the
hardware [15]. The project investigates lightweight heuristics
to pair DVS events related to incoming light rays based
on their temporal activation patterns to circumvent the high
computational requirements imposed by frame-based light-
field processing. It is expected that depth information will open
new opportunities for ROI detection (e.g., nearby objects) and
improve end-to-end perception accuracy.

Hence, NimbleAI is studying techniques to capture and
optimally represent the spatiotemporal evolution of 3D scenes
using minimal visual event flows that match the optimiza-
tion features implemented in the downstream processing and
inference engines, and thus reduce energy consumption and
latency. For instance, the 3D information encoded in the event
flows is expected to expose new forms of sparsity when
applying the right pre-processing kernels (e.g., optical flow
based event warping [16]). Therefore, the expectation is that
by investing some computing power and energy to gain some
situational awareness and shape visual event flows early, a
major reduction of the subsequent workload will be achieved,
saving lots of energy by doing that.

As shown in Fig. 1, the project envisions a two-stage
perception approach, where the two stages reinforce each other
to perform more efficiently as the deployment environments
become more familiar and visual stimuli are better understood.

1.- An always-on early perception and optimization stage
implements selective attention and optical flow algorithms to
detect, delimit and track ROIs, and configure accordingly the
visual pathways. This includes selecting the most appropriate
sensor resolution for each ROI and routing sensed visual
events to the most appropriate processing kernel and AI model
(e.g., CNN) for efficient end-to-end region inference. This
stage is inspired by unconscious visual processing and neural
signalling in biological systems, and hence is largely invisible
to the application yet adjustable through user-driven directives.

NimbleAI explores low-energy and low-latency advantages
of SNNs, especially when applied to DVS events, to power
autonomous functioning of the early perception and optimiza-
tion stage. Furthermore, SNNs are particularly well suited to
online training as their event-based learning rules typically
use only information local to the synapse [17]. This property
will be conveniently exploited to continuously improve on

dynamically selecting ROIs in the early perception stage,
using inference feedback from subsequent AI models to drive
the SNN online training process. Hence, part of the energy
consumed to complete end-to-end inference also serves the
purpose of improving the overall energy use.

2.- An on-demand inference stage implements pre- and
post-processing kernels on the downstream processing engine
(i.e., Codasip’s RISC-V CPU, Menta’s eFPGA fabric, and
CEA’s CSRAM in-memory computing memory blocks [18])
and runs user-trained CNNs on the inference engine (i.e.,
event-driven dataflow GML’s NeuronFlow [19]). As it occurs
with SNNs, the type of events that are processed by event-
driven dataflow architectures such as NeuronFlow correspond
with visual events delivered by DVS sensors, thus maximizing
end-to-end efficiency along visual pathways. Recent research
has shown that CNNs designed and trained with popular AI
frameworks (e.g., TensorFlow) can be converted to equally
accurate event-driven networks with lower computational com-
plexity and hence greater energy-efficiency [20]. To support
visual pathways and optimally benefit from DVS foveation,
the inference engine can run multiple CNNs with varying
topologies simultaneously.

To deal with challenge C3, NimbleAI explores the novel
concept of Virtual Neural Networks (VNNs) to enable run large
and accurate event-driven CNNs and SNNs in only 50 mm2

chips. This concept will be supported by dedicated TSVs and
stacked layers of Non Volatile Memory (NVM), which will
be 3D-architected to create a high-bandwidth and high-density
memory hierarchy for quickly swapping active and non-active
neurons and layers of running CNNs in the inference engine
and SNNs in the early perception stage.

Note that event- and region-based sensing and process-
ing described above helps limit the complexity and energy-
consumption of AI models, and thus deal with challenges
C1 and C2. AI models and processing kernels that work on
selected image regions are simpler than those that work on
full images, and event-driven networks that execute on neuro-
morphic hardware only consume energy to process significant
changes in their neuron states and visual inputs. As opposed to
state-of-the-practice, where input images are typically down-
scaled to keep workloads manageable, NimbleAI will process
selected full-resolution ROIs for better accuracy. Also, as
opposed to state-of-the-practice where more complex/accurate
AI models translate directly into more computing and energy
consumption, in NimbleAI model complexity to workload
translation will be dynamically adjusted through runtime
optimization mechanisms that control event generation and
processing along visual pathways.

This unique optimization approach is opposed to the current
situation in which performance and accuracy trade-offs are
often presented to users as a necessity at the design phase
that remains fixed in deployment. NimbleAI will not oblige
users to choose between accuracy or efficiency. Instead, it will
offer to the user a number of system-level runtime optimization
strategies that will be continuously refined by means of online
learning and applied directly on the user-trained AI models.



IV. EXPECTED BENEFITS IN SPACE APPLICATIONS

NimbleAI expects to deliver technology advantages to build
miniaturized, powerful and energy-efficient vision payloads,
tackling the challenges introduced in section II. Some of these
advantages are linked to event-based vision, which is actively
being explored by ESA, NASA and other space agencies [21].

A1.- Data-efficiency (vs C1, C2, C3): NimbleAI is aimed at
capturing and processing minimal amounts of data with high-
value information to support efficiently scale up AI models and
sensor resolution while optimising use of downlink bandwidth.

A2.- Low-latency (vs C2): NimbleAI allows for capturing
and processing in real-time high-speed events that cannot be
captured with traditional space borne cameras. This is very
interesting for 3D mapping of planetary surfaces, monitoring
phenomena with fast temporal dynamics, such as explosive
eruptions, as well as sporadic events that occur over a very
short span of time, such as meteoroids. Low-latency visual
inference results are also extremely important in landing,
obstacle avoidance, autonomous rendezvous and docking ma-
noeuvres to precisely estimate time-to-contact [22].

A3.- Energy-efficiency (vs C3): NimbleAI is aimed at imple-
menting different runtime optimization strategies to dynami-
cally trade off performance and accuracy in different energy
availability situations. This is relevant for instance in the case
of LEO satellites, whose (solar) energy availability varies with
the orbit inclination [23].

A4.- 3D-Integrated sensing-processing (vs C4): In addition
to amplifying the advantages above, 3D integration will enable
significant mass reduction in space payloads as a result of
circumventing board-level component integration and routing.
Payload miniaturization is extremely important as small satel-
lites and CubeSats revolutionize the space industry.

A5.- Superior 3D visual sensing: NimbleAI augments the
inherent high dynamic range of DVS technology, allowing
to run processing kernels tailored to the specific ranges of
lighting in each ROI. This is relevant specially in Earth
observation missions [24] and rendezvous maneuvres, where
lighting conditions change very quickly based on relative
position of spacecrafts with regard to a few high intensity
light sources. The NimbleAI light-field DVS sensor is expected
to enable passive, high dynamic range, instantaneous, and
energy-efficient 3D visual sensing that is largely not affected
by lighting (and weather conditions), thus overcoming major
LiDAR weaknesses [25].

A6.- After-deployment adaptability: The eFPGA fabric in
the NimbleAI architecture provides hardware flexibility to
support in-flight upgrades of AI models and processing ker-
nels. This helps keep up pace with rapidly evolving AI-based
computer vision algorithms.

V. TAKEAWAYS

NimbleAI takes inspiration from ultra energy-efficient eye-
brain systems. The project expects to achieve 100x energy-
efficiency improvement and 50x latency reduction w.r.t.
CPU/GPUs processing frame-based video. To achieve this,

NimbleAI enables event-driven visual inference, where sens-
ing and processing are dynamically adjusted to operate jointly
at the optimal temporal and data resolution levels.

The project will deliver a functional prototype of the
3D-integrated NimbleAI sensing-processing architecture along
with the corresponding programming tools and OS drivers to
enable users run their AI models on it. The prototype will be
flexible to accommodate user IP and will combine commercial
neuromorphic chips and NimbleAI testchips (e.g., foveated
DVS sensor). Please reach out to test combined use of your
vision pipelines and NimbleAI technology in this prototype.
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